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ABSTRACT: 

For modelers evaluating the impact of dam, levee, and structure failures the need is to be able to 
determine the flood height and timing. A two-dimensional (2-D) model needs to be able to reproduce this 
flood wave along the channel and over dry ground. This report details the testing of the 2-D shallow- 
water module of the ADaptive Hydraulics (ADH) model for surges over initially dry ground. ADH 
utilizes an unstructured computational mesh that is automatically refined. Other modules in ADH include 
three-dimensional (3-D) Navier Stokes (with and without the hydrostatic pressure assumption) and 
groundwater flow. Testing is conducted in comparison to physical flume results for two test cases. The 
first test case is for a straight flume and the second contains a reservoir and a horseshoe channel section. It 
is important that the model match the timing of the surge as well as the height. In both cases the ADH 
compared closely with the flume results. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not 
to be construed as an official Department of the Army position unless so designated by other authorized documents. 
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1     Introduction 

Traditionally, one-dimensional (1-D) hydrodynamic models have been used 
to predict the impact of dam break, lock failure, levee breach, etc. A 1-D model 
assumes uniformity in velocity and water-surface elevation over the cross 
section. Since the actual variation is how energy is removed from the system, a 
1-D model will require estimation of energy loss coefficients for expansion and 
contraction. Generally these coefficients cannot be found by tuning since no 
similar event in the drainage basin has occurred. The water-surface predictions 
are sensitive to these coefficients. Two-dimensional (2-D) models represent the 
lateral as well as the longitudinal variation in velocity and water surface and so 
are able to reproduce the energy loss with much less uncertainty. 

The U.S. Army Corps of Engineers (USACE) needs a 2-D model that will 
supply hydrodynamic variation laterally and longitudinally in sections with 
geometric features such as bridges, hydraulic structures, and potential failures. 
The model should also be able to reproduce levee breach and flooding events 
with a minimum of coefficient tuning. The purpose of this investigation is to 
develop a 2-D modeling system that can be rapidly applied to a site and supply 
accurate hydrodynamic results. 

The ADaptive Hydraulics (ADH) model has features that place it as the 
appropriate code to modify and use for modeling of surges over initially dry land. 
The primary feature that ADH contains that sets it apart from other codes is in its 
ability to automatically refine the mesh as demanded by the hydrodynamics. 
Since dam and levee breaches will not generally allow the user to know ahead of 
time where resolution will be needed, it is important the model itself can find and 
refine these areas of hydrodynamic sensitivity. A second important attribute of 
ADH is that it can run on many platforms from desktop computers to parallel 
processing supercomputers. The code was designed from the beginning to be a 
parallel code. If the size of the problem outgrows the desktop computer it can be 
moved to more powerful computers. 

This report begins with a description of the ADH. This includes the manner 
in which wetting and drying is addressed and is followed by the actual equations 
that are solved. The next section demonstrates ADH results compared with 
laboratory results. The final section presents conclusions from the investigation. 
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2    Model Description 

ADH is a finite element code that presently can simulate 3-D unsaturated 
groundwater flow, 3-D Navier Stokes flow (both hydrostatic and nonhydrostatic), 
and 2-D shallow-water flow. The code uses linear interpolation for all the 
variables. ADH uses tetrahedral elements in 3-D and triangle elements in 2-D. 
ADH is capable of mesh adaptation so that it can automatically split elements to 
produce a more accurate representation of the hydrodynamics. Later it may 
recombine elements if the hydrodynamics no longer demands this resolution. 
This is a tremendous advantage for the user. The modeler need only create a 
mesh that accurately captures the topography of the domain. The model can then 
refine the mesh, if necessary, to create an accurate flow field. Without this 
feature the user would have to either create a highly resolved mesh everywhere, 
or the user will have to modify the mesh by trial as a run progresses. 

ADH uses an inexact Newton technique to develop the linear set of equations 
from the finite element statement. These algebraic equations are solved for the 
dependent variables of the shallow-water equations (h,u,v) using the BiCGSTAB 
algorithm (see Kelley 1995) and a set of preconditioners. The Newton solver is 
also utilized for wetting-drying problems. 

A mesh of smaller segments, called elements, represents the problem domain. 
The independent variables (x,y) and the dependent variables (h,u,v) are 
interpolated in each of these elements. The equations of motion and continuity 
are integrated on combinations of these elements. Portions of the overall domain 
are going to be dry, and other portions will be wet. One could have elements be 
either wet or dry, that is, turned on or turned off. However, this on-off switch can 
result in model instability. It also would require a fine mesh. Instead, ADH 
integrates the shallow-water equations over the wet portion of an element. A 
single element that contains the waterline will only partially contribute to the 
shallow-water equations. In this way the waterline is found indirectly through the 
iterative process. This adds more nonlinear behavior to the system and is likely to 
increase the number of nonlinear iterations required for each time-step. However, 
it allows the model to find the waterline at the same time that the flow variables 
are calculated. 

The following section provides the shallow-water equations as used in ADH. 

dU    8F    dG    „    _ m  + — + + H = 0 (1) 
dt      dx     dy 
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g = acceleration due to gravity 

p = fluid density 

zb = channel bed elevation 

P = pressure at the water surface 

n = Manning's roughness coefficient 

Chapter 2     Model Description 



Co = dimensional constant (C0 = 1 for SI units and C0 = 1.486 for English 
units) 

The Reynolds stresses are determined using the Boussinesq approach to the 
gradient in the mean currents: 

ö-x* = 2pv, -£- (6) 
ox 

a*=2pV-fy (7) 

and 

'dy    dx VXy=(Jy*=PVt(— + —) W 

where vt = kinematic eddy viscosity (which varies spatially). 

The ADH shallow-water equations are placed in conservative form so that 
mass balance and the balance of momentum and pressure are identical across an 
interface. This is important in order to match the speed and height of a surge or 
hydraulic jump. 

The equations are represented in a finite element approach. The quality of the 
numerical solution depends on the choice of basis or trial function and the test 
function. The trial function determines how the variables are represented and the 
test function determines the manner in which the differential equation is 
enforced. In the Galerkin approach the test functions are chosen to be identical 
with the trial functions. When the flow is advection-dominated, the Galerkin 
approach produces oscillatory behavior. The basic problem is that the Galerkin 
form of the test function cannot detect the presence of a node-to-node oscillation 
and so allows this spurious solution. The approach used in ADH is to enrich the 
standard Galerkin test function with an additional term that can detect and control 
this spurious solution. 

The Petrov-Galerkin method used here is based on elemental constants for 
coefficients. This reduces the stabilization to the nonconservative form. This is 
not a problem since the stabilization is only applied within the elements and uses 
the Galerkin test function to enforce "flux" balance across element edges. For 
illustration, consider the shallow-water equations in nonconservative form 

dU     .dU    DdU    u   n ™  + J4 + g + H = 0                                                               (9) 
8( dx        8y 
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where, A - -^j; and B = ^j. The trial functions (or interpolation/basis 

functions) are the Lagrange polynomials. These are piecewise linear functions 
that are continuous across element boundaries. Spatial derivatives, however, are 
not continuous across these element edges. Each of the dependent and 
independent variables is interpolated via these trial functions. For example, 

N 
«(*)= X 0j (x)uj, means that the approximate solution, U(x), is made up of 

7=1 
the product of the trial function for nodej' and the nodal value at that location. 
The test function is chosen as: 

<Pi =0jl + a 
d*.A+yLB dx dy 

(10) 

where, 

« = 0.5/ v•v + gh + 
f i \2 

vA/y 

-1/2 

(11) 

/=(Qe)
1/2,i.e, the square root of the element area 

V = (w,v), the element average velocity components 

At = the time-step size 

The finite element statement becomes: 

ik dUi   a^-      dfr 

Q. 
dt      dx 
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dy 

d& + 

da e    O dx dy 

W, + AI^L+BIWL+HI 

dt dx dy 
= 0 

(12) 

where, the subscript / indicates the finite element approximation. The Petrov- 
Galerkin contributions are integrated on the interior of the elements, but not 
across element edges. This contribution stabilizes the Galerkin approach. This 
scheme utilizes a single scaling factor a. This is different from the scheme 
reported in Berger and Stockstill (1995). That scheme involved scaling each 
eigenvalue. However, this method does not converge using the iterative solver in 
ADH. Instead, a single value scaling (Equation 11) is used. 
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3    Model Tests and Results 

A numerical model needs to be produced in a careful manner. The underlying 
approach must be conservative so that mass and the momentum balance are 
correctly represented. If not, the speed and location of a shock will be wrong. 
These comparisons with physical flume results will allow a check on the 
numerical code. The first case is a straight flume in which a dam is rapidly 
removed. This produces a surge downstream over initially dry ground and a 
rarefaction wave moving upstream. The second case also involves an 
instantaneous dam removal and a surge moving over dry ground. This case 
includes a curved section of channel. The straight channel is a 1-D problem while 
the curved channel represents a more general 2-D test case. 

Case 1: Straight Flume 

The first case is a comparison with results from a study done at ERDC's 
Waterways Experiment Station (U.S. Army Engineer Waterways Experiment 
Station 1960; 1961). This study is of a dam break in a straight flume. The flume 
was 121.9 m (400 ft) in length and had a width of 1.2 m (4 ft). The flume had a 
slope of 0.0015 m (0.005 ft). The dam is situated 61 m (200 ft) into the flume. 
Water is pooled upstream of the dam prior to the test. The initial water surface 
upstream of the dam is flat with the depth at the dam of 0.3048 m (1 ft). 
Downstream the bed is dry. The water level is recorded at several stations both 
upstream and downstream of the dam. When the dam is removed, a rarefaction 
wave propagates upstream and a surge downstream. For this report, the water 
depth (overland head) at stations 160, 191,200 (dam), 225, 275, 345 are 
compared between ADH and the physical model flume. The station numbers 
indicate the location from the upstream edge of the model. Stations 160 and 191 
are upstream of the dam; sta 200 is at the dam location; and stations 225, 275, 
and 345 are downstream of the dam. Figure 1 shows the initial water surface, the 
bed, and channel stations.1 

1 Figures 1-7 in this report express units of measurement in feet. To convert feet to 
meters, multiply the number of feet by 0.3048. 
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Figure 1.    Layout of straight flume, elevation view 

The numerical mesh contains 4,000 elements and 2,505 nodes. The 
downstream model boundary extends 30.5 m (100 ft) beyond that of the flume. 
This allows the surge to pass out of the model without contaminating the results 
at the flume stations. The numerical model for this case is treated as a closed 
region in which the water stays within the domain for the entire run. The 
upstream and downstream boundaries are treated as impervious wall. Otherwise 
the numerical flume matched that of the physical flume. 

The model parameters are given in Table 1. The Kinematic Eddy Viscosity 
(EVS) card is used to set the kinematic eddy viscosity and the Molecular 
Viscosity (MU) card sets the molecular viscosity. The Manning's Roughness 
Unit Conversion (MUC) card is used for unit conversion with the Manning's 
roughness formulation. It has a value of 1 for SI units and 1.486 for English 
units. Density (RHO) and Gravity (G) set the values for density and gravity in the 
desired units. The Drying Limits (DTL) is used for wetting and drying. The 
Maximum Levels of Refinement (ML) and Shallow-Water Refinement Tolerance 
(SRT) card are used for adaptation. The ML card sets the number of times the 
grid can adapt and the SRT card sets the error level at which the grid will adapt. 
A value of zero indicates that the same result was obtained with or without 
adaptation on this particular test case. 

Table 1 
Test Conditions for Straight Flume Dam Break Case 
Condition Values 

Kinematic Eddy Viscosity (EVS) 0.09 0.09 0.09 
Molecular Viscosity (MU) 0.0001 
Manning's Roughness Unit Conversion (MUC) 1.486 
Density (RHO) 1.94 

Gravity (G) 32.2 
Drying Limits (DTL) 0.01  0.04 
Maximum Levels of Refinement (ML) 0 

Shallow-Water Refinement Tolerance (SRT) 100 
Time-step 0.25 
Manning's n 0.009 

The time-step is determined by decreasing the size until the results no longer 
changed. The results are considered converged with a time-step of 0.25 sec. The 
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physical model study suggests a Manning's n value of 0.009, which is used in the 
numerical model. 

Figures 2 through 7 show the test results for stations 160, 191, 200, 225, 275, 
and 345. These graphs show a time-history of the water level for both the 
numerical model and the flume. The arrival time of the wave in ADH agrees with 
the arrival time from the flume at all stations. Initially the water level in the 
model seems to fall at the same rate as in the flume for both the upstream 
stations. Near the end of the run, the water level in the flume drops off more 
rapidly than predicted in the model (see Figures 2 and 3). The flume results at the 
site of the dam, sta 200, show a surge superimposed on the overall water-surface 
drop. The numerical model captures the overall drop but not the superimposed 
surge. The maximum difference at this station occurs at a time of 50 sec. 

The three downstream stations (225, 275, and 345), shown in Figures 5, 6, 
and 7, also have some points that differ from the physical model by as much as 
0.04. Overall the water level predicted by the numerical model is in close 
agreement with the data from the flume. At sta 225 (Figure 5) the time of arrival 
of the water-surface peak predicated in the numerical model agrees with that of 
the flume although there is a 3 percent error in the maximum water level. The 
time predicted for maximum water level at sta 275 (Figure 6) is 5 sec earlier than 
seen in the flume. This is about a 14 percent error. The peak elevation at this 
station also differs by 11 percent from the flume. The last station, 345 (Figure 7), 
has only a 5 percent error in the maximum water level and the predicted time 
agrees with the flume. The rise in the water level in the numerical model after 
125 sec is due to the water collecting above the lower boundary of the numerical 
model. This is after the time of comparison to the physical flume. 

Station 160 

§; o.8 

S 0.6 ADH 
experiment 

150 200 

Figure 2.    Depth comparison for ADH and flume experiment, sta 160 
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Figure 3.    Depth comparison for ADH and flume experiment, sta 191 
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Figure 4.    Depth comparison for ADH and flume experiment, sta 200 
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Figure 5.    Depth comparison for ADH and flume experiment, sta 225 
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Figure 6.    Depth comparison for ADH and flume experiment, sta 275 
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Figure 7. Depth comparison for ADH and flume experiment, sta 345 

Case 2: Horseshoe Curve Flume 

The second case is a comparison with a study done by Bell et al. (1992). 
Figure 8 shows a plan view of the flume used in the study. The flume is 
composed of a reservoir section and a channel section. The reservoir has a 
bottom elevation of 0.089 m (0.291 ft) lower than the channel bed. The initial 
water depth in the reservoir is 0.305 m (1 ft) and the channel is dry. The water is 
pooled in the reservoir. The water level in the flume and the time was recorded at 
five of the eight stations. No data were provided at stations 3, 5, and 7 from the 
flume study. Sta 1 is located in the straight channel section 0.3 m (1 ft) 
downstream from the dam. Stations 2, 4, and 6 are in the curved section of the 
flume. Sta 2 is 3 deg into the curve; sta 4 is 90 deg into the curve; and sta 6 is 
177 deg into the curve. Sta 8 is located 2.29 m (7.51 ft) from the end of the 
curve. The numerical model parameters are given in Table 2. 

Table 2 
Test Conditions for Horseshoe Curve Flume Dam Break Case 
Condition Values 

EVS 0.008 0.008 0.008 
MU 0.00001 
MUC 1 
RHO 1000 
G 9.81 
DTL 0.004 0.01 
ML 2 
SRT 3 
Time-step 0.03 
Manning's n 0.009 

Chapter 3     Model Tests and Results 11 



The grid used in the numerical model is shown in Figure 9. This initial grid 
has 899 elements and 532 nodes. ADH automatically refines the mesh based 
upon the hydrodynamic error measured during the simulation so the initial grid is 
the smallest number of elements and nodes for the model test. The Bell et al. 
(1992) article suggests a Manning's n value of 0.0165 based on their numerical 
model study. However, prior experience suggests this is far too high for a 
Plexiglas flume. Instead a Manning's n value of 0.009 is used, which is 
consistent with other studies done in smooth flumes, e.g., Berger (1993); Berger 
and Stockstill (1995); and Stockstill et al. (1997); and the straight channel test in 
this report. A Manning's n value of 0.009 is in line with the recommended values 
found in Chow (1959) and Henderson (1966). 

The test result comparisons are shown in Figures 10 through 14. In these 
graphs, symbols indicate the experimental data and a solid line indicates the 
numerical data. The outer wave is shown in blue and the inner wave in red. At 
stations 1, 6, and 8 (Figures 10, 13, and 14, respectively) the predicted arrival 
time from the numerical model agrees with the time observed in the flume. The 
predicted arrival time at sta 2 (Figure 11) is approximately one tenth of a second 
early, which is about a 1 percent error. The predicted arrival time for the inner 
wave at sta 4 (Figure 12) is early by three tenths of a second (a 4 percent error) 
and the outer wave is early by two tenths of a second (a 6 percent error). All of 
these arrival times are likely within the test uncertainty in the physical flume. The 
predicted water level rises at the same rate seen in the flume at stations 1, 2, and 
8. At sta 4 the predicted water level rises at a rate that is a bit slower than seen in 
the flume for the outer wall, but along the inner wall the water level increases at 
the same rate. The difference between the inside and the outside wall water- 
surface elevations is small. At sta 6 the water level along the outer wall rises at 
the same rate, but along the inner wall the water level rises more slowly than seen 
in the flume. The predicted maximum height agrees with the water levels seen in 
the flume at all stations except sta 2. In the results from the flume, the maximum 
water-level record at this location is around 0.043 m (0.141 ft). At the time these 
maximum heights are observed in the flume, the numerical model predicts a 
height of 0.067 m (0.219 ft) and by the end of the run the numerical model has a 
height of 0.09 m (0.29 ft). 
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Figure 8.    Plan view of flume 
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Figure 9.    Initial grid for ADH 
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Figure 10. Depth comparison for ADH and flume experiment, sta 1 
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Figure 11. Depth comparison for ADH and flume experiment, sta 2 
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Figure 12. Depth comparison for ADH and flume experiment, sta 4 
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Figure 13. Depth comparison for ADH and flume experiment, sta 6 
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Figure 14. Depth comparison for ADH and flume experiment, sta 8 
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4    Conclusions 

One of the key characteristics for this type of problem that ADH must 
reproduce is the timing of the surge. If the formulation is not fully conservative, 
the speed of the surge will not match. There are six comparison locations in test 1 
and eight locations in test 2. Overall the two test cases show ADH matches the 
surge speed very well at all stations. 

The other key characteristic is the height of the surge. Of the six data 
locations in test 1, five of the six closely match. In the eight data locations in test 
2, six compare closely. ADH matches surge heights well. 

Parameters are selected based upon reasonably well known values. The 
model comparisons are accomplished without need for tuning. This investigation 
shows that ADH compares well with tests of dam break and surge propagation. 
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